SI_News_07 LINK_Synthese von Big Data und Mafo

Data Science küsst Marktforschung voller Energie

Der Marktatlas der Energieversorger – eine Synthese von Big Data und Marktforschung. Der EVU Marktatlas B2C von LINK und Novalytica ermöglicht Marktanalyse und Entwicklung neuer Geschäftsmöglichkeiten im Privatkundensektor der Stromwertschöpfungskette.

Für eine professionelle und aktive Marktbearbeitung im Privatkundenbereich sind auch Energieversorgungsunternehmen (EVU) auf Geo- und Konsumdaten angewiesen. In aller Regel verfügen Energieversorger über entsprechende Informationen aber höchstens für ihr eigenes Versorgungsgebiet, bzw. für einen Teil ihrer privaten Stromkunden. Aus diesem Grund haben das Schweizer Marktforschungsinstitut LINK und die Data-Science-Spezialisten von Novalytica gemeinsam den EVU Marktatlas B2C konzipiert und 2022 erstmals umgesetzt. Das Studienkonzept basiert auf Expertengesprächen und Fachinputs aus der Branche, berücksichtigt Befragungs- und öffentlich zugängliche Sekundärdaten und bietet auf dieser Grundlage mikrogeografische Analysemöglichkeiten.

Methodischer Ansatz

Die Studie basiert auf der Hochrechnung einer umfangreichen Primärdatenerhebung auf die gesamte Schweiz. LINK führte im vierten Quartal 2021 eine Befragung von mehr als 10’000 Privatkunden im Alter zwischen 18 und 79 Jahren in der Schweiz durch, die auf Basis von Region, Alter und Geschlecht quotiert wurde und deren Stichprobe damit an der Bevölkerungsverteilung gemäss Bundesamt für Statistik ausgerichtet ist. Das Beantworten des Fragebogens dauerte ca. 10 Minuten und beinhaltete diverse Themen rund um die Einstellung gegenüber Energiethemen, der Marken- und Kundenwahrnehmung von Energieversorgern und dem Potenzial von Energieprodukten. Novalytica kombinierte alsdann eine Vielzahl öffentlich verfügbarer Geodaten.

Neben Daten des Bundesamtes für Statistik, des Gebäuderegisters, des Handelsregisters oder kantonaler Geoportale umfasste diese Recherche auch online verfügbare Quellen wie Immobilieninserate. Neben Datenpunkten zur Wohnsituation (u. a. Gebäudetyp, Baujahr, Renovationen, Preis-/Mietniveau, Grösse), welche bei Fragen rund um Energie zentral sind und gleichzeitig einiges über die Haushalte preisgeben, sind auch Datenpunkte zur Soziodemographie (u. a. Alter, Haushaltsgrösse, Anteil Nicht-Schweizer) auf Ebene Hektar vorhanden. Die aus diesen Quellen kombinierten Daten werden aufbereitet und können so jeder Strasse und Adresse aus den Befragungsdaten zugeordnet werden.

Die Ergebnisse der Privatkundenbefragung wurden anschliessend mit den Geodaten verbunden. Mittels der Machine-Learning-basierten Modellierung Gradient Boosting werden die Survey-Antworten auf Gemeinde- und Hektarebene hochgerechnet. Das Modell ermittelt Zusammenhänge zwischen den einzelnen Variablen und erstellt basierend darauf eine Schätzung. Korreliert beispielsweise die durchschnittliche Haushaltsgrösse oder der Anteil Einfamilienhäuser mit der Wechselwahrscheinlichkeit, wird dies vom Modell berücksichtigt. Zur Illustration des Vorgehens zeigt Abbildung 1 beispielhaft das Resultat eines Modells für die Schätzung der Wechselbereitschaft privater Stromkunden aggregiert auf Gemeindeebene.

Abbildung 1: Modellierte Wechselaffinität auf Ebene Gemeinde

Qualitätsaspekte bei öffentlich zugänglichen Daten und der Modellierung

Ein wesentlicher Teil der genutzten Sekundärdaten stammt von offiziellen Quellen wie dem BfS, was eine hohe Datenqualität sicherstellt. Allerdings haben diese oft einen Time Lag: So sind verschiedene Datenquellen dort derzeit nur Stand Ende 2019 verfügbar. Angesichts der sich in Immobilienbestand und Bevölkerung vergleichsweise langsam entfaltenden Veränderungen über die Zeit hinweg dürfte dies die Aussagen aber nicht wesentlich beeinflussen. Zudem wurden aktuelle Online-Quellen genutzt und im Hintergrund automatisch aktualisiert, um gleichzeitig maximale Abdeckung und bestmögliche Datenaktualität zu erreichen.

Befragungs- und öffentliche Datenquellen wurden, wenn möglich, über die genaue Hausnummer verbunden, ansonsten mit Durchschnittswerten für die Strasse. Nur Observationen mit Strassenangabe flossen in die Modellierung ein. Nach dem gängigen Vorgehen bei der Entwicklung von Machine-Learning-Modellen wurden sogenannte Test-Stichproben gebildet, welche zur Qualitätsprüfung eines Modells verwendet werden und verhindern, dass ein Modell nur innerhalb der Stichprobe gute Resultate liefert. Dieser Prozess wurde aus Qualitätsgründen mehrmals durchlaufen.

Analysemöglichkeiten im EVU Marktatlas 2022

Die Ergebnisse werden in einem selbst zu bedienenden Datenportal zur Verfügung gestellt, das online im Browser, d.h. ohne eine lokale Installation, abrufbar ist. In das Datenportal fliessen sowohl die deskriptiven Befragungsergebnisse, als auch die modellierten und auf geografische Einheiten extrapolierten Indikatoren mit ein.

Bei der mikrogeografischen Analyse im Rahmen der Studie ist es möglich, Hochrechnungen bis auf Hektar, Gemeinde oder Versorgungsgebiet zu fahren. Die entsprechenden Analysen zu Wechselbereitschaft, Marktpotenzialen für Energieprodukte oder Markenbekanntheit zeigen, dass es zwar klare regionale Unterschiede gibt, diese sich in der Regel aber nicht homogen über Versorgungsgebiete oder Gemeinden verteilen. Bei der Bewerbung gewisser Leistungen wie beispielsweise Wärmepumpen oder Photovoltaik macht es demnach Sinn, eine differenzierte Marketing- und Vertriebsstrategie umzusetzen, um sich auf besonders erfolgversprechende regionale Zielgruppen zu konzentrieren – dies verspricht mehr Effektivität und Effizienz.

Abbildung 2: Lokale Potenziale für Premium-Stromprodukte in der Stadt Bern

Abbildung 2 zeigt eine Beispielauswertung in Form einer regionalen Hektaranalyse für die Stadt Bern hinsichtlich des Marktpotenzials für Premium-Stromprodukte. Eine differenzierte Marketingstrategie, auch im Hinblick auf geografische Merkmale, kann so nachhaltig geplant und begründbar verfolgt werden.
Die geografische Extrapolation von Befragungsdaten mittels Datenanreicherung von grossen, öffentlich zugänglichen Sekundärdatenquellen und auf Machine Learning basierten Korrelationsmodellen ist eine spannende Weiterentwicklung klassischer Marktforschungs-Studiendesigns. Durch die Kombination von Meinungs- und Einstellungsdaten mit Strukturdaten profitieren schlussendlich beide Datenquellen, da sie sich erkenntnistheoretisch gegenseitig anreichern.

Die Einsatzmöglichkeiten dieses Ansatzes sind in dieser Form auf Branchen und Business Cases beschränkt, für welche eine geografische Analyseperspektive relevant ist. Im besten Fall kann er aber auch einen Ausblick darstellen, wie die klassische Marktforschung im Zeitalter immer grösserer, automatisierter Datenströme eine relevante Rolle spielen kann.

Stefan Reiser

Mitglied der Geschäftsleitung und Managing Director für Marketingforschung, LINK

stefan.reiser@link.ch

David Sanchez

Director für Energiemarktforschung, LINK

david.sanchez@link.ch

Dr. Thomas Spycher

Partner, Novalytica

thomas.spycher@novalytica.com

Download Artikel
Swiss Insights News #07

Institute Member von
SWISS INSIGHTS

www.link.ch

Alle SWISS INSIGHTS News finden Sie hier: SWISS INSIGHTS NEWS

Share this post